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ABSTRACT

A simple linear algebraic solution is introduced for retrieving the location and time-of-occurrence of lightning
ground strikes on a spherical earth from a network of four or more time-of-arrival sensors. Since the solution
accounts for earth curvature, it represents an extension to earlier planar model results. A test of the retrieval
method is provided using computer-simulated datasets. The method is easy to comprehend and completely avoids
reference to the mathematics of spherical hyperbolas. An extension to the spherical earth solution is provided
for an oblate spheroidal earth geometry, and the importance/relevance of oblate effects are discussed. Future
application of these methods in support of the North American National Lightning Detection Network is desirable,
but additional theoretical investigations are required to incorporate magnetic bearing information into the present
solution process.

1. Introduction

Recently, Koshak et al. (2000) introduced a linear
planar (LP) method for determining the location and
time-of-occurrence of cloud-to-ground lightning using
a network of Advanced Lightning Direction Finder
(ALDF) sensors. The study demonstrated how radio fre-
quency arrival time, bearing, and signal amplitude
ALDF data could be simultaneously analyzed to deter-
mine the ground discharge location on a flat earth. Be-
cause solutions were obtained by inverting a single sys-
tem of linear equations that included all the ALDF data
and because the linear system could be easily modified
if some ALDF data were not available, numerical coding
of the LP method was particularly easy and the method
itself highly flexible.

Based on computer-simulated tests, the LP method
located lightning to within about 1 km, provided the
discharges were within a few hundred kilometers of the
(four station) ALDF network. Sources within the area
bounded by the ALDF sensors could be located to within
200 m. By comparison, the nadir resolution of the Na-
tional Aeronautics and Space Administration’s
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(NASA’s) space-based, low earth-orbiting lightning de-
tectors, the Optical Transient Detector (OTD) and the
Lightning Imaging Sensor (LIS), are 10 km and 4 km,
respectively (Christian et al. 1992; Boccippio et al.
2000). Hence, it was concluded that the LP method is
useful for validating the location accuracy of OTD and
LIS (Koshak et al. 2000).

Assuming four or more sensors are available, the LP
method can be used to determine lightning locations
using just arrival time data. For the case of four arrival
time measurements (t1, t2, t3, t4) from sensors located
at [(x1, y1), (x2, y2), (x3, y3), (x4, y4)], the LP method
reduces to the linear system

2     g (x 2 x ) (y 2 y ) c (t 2 t ) x1 2 1 2 1 1 2     
2g 5 (x 2 x ) (y 2 y ) c (t 2 t ) y , (1)     2 3 1 3 1 1 3     2g (x 2 x ) (y 2 y ) c (t 2 t ) t3 4 1 4 1 1 4     

where the elements of the column vector on the left-
hand side are nonlinear functions of the arrival time
measurements and the sensor locations. Again, the re-
trieval is fundamentally planar, since the retrieved
source location is in terms of the Cartesian coordinates
(x, y). The retrieved time-of-occurrence of the discharge
is t. See Koshak et al. (2000) for additional details.

In the current work, the LP approach is extended to
account for earth curvature. The new formulation is
called a linear spherical (LS) method. Because spherical
earth curvature effects are accounted for, the LS method
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FIG. 1. Spherical coordinate system used for the LS method.

will retrieve distant lightning sources more accurately
than the LP method, thereby increasing the area over
which OTD/LIS data can be ground-validated. Like the
LP approach, the LS method determines source location
from four or more arrival time measurements, but in-
stead of expressing the source solution in Cartesian co-
ordinates (x, y), it is expressed in terms of latitude and
longitude coordinates (w, l). Moreover, the simple LS
method completely avoids reference to the mathematics
of spherical hyperbolas such as those discussed in Lewis
(1960, 1964).

In addition, a quasi-analytic extension to the LS meth-
od is provided to accommodate an oblate spheroidal
earth geometry. The distance between a lightning source
and a time-of-arrival (TOA) sensor is measured along
a geodesic and can be expressed in terms of an elliptic
integral. The importance/relevance of oblate effects are
discussed using computer-simulated sources and simu-
lated arrival time errors.

2. LS method for spherical earth

It is assumed that four or more (n $ 4) TOA sensors
are available for determining the latitude/longitude lo-
cation of a cloud-to-ground lightning event on a spher-
ical earth surface. To solve this problem, a spherical
coordinate system, as shown in Fig. 1, is used. By def-
inition, the prime meridian is associated with longitude
l 5 0 and the equator with latitude w 5 0. The spherical
earth radius is denoted by the variable r. If r 5 rr̂ is
the lightning source location and ri 5 rr̂ i is the location
of the ith sensor, the unit vectors can be written as (see
Fig. 1)

r̂ 5 cosw cosl û 1 cosw sinl v̂ 1 sinw ŵ,i i i i i i

r̂ 5 cosw coslû 1 cosw sinlv̂ 1 sinwŵ. (2)

So the spherical form of the arrival time equation be-
comes

1
t 5 t 1 ru , (3)i ic

where t is the time of occurrence of the lightning at r,
ti is the arrival time measurement at ri, and ui is the
angle between the unit vectors in (2) given by

ui 5 cos21(Ki1 cosw cosl 1 Ki2 cosw sinl 1 Ki3 sinw),

(4)

with Ki1 5 coswi cosli, Ki2 5 coswi sinli, and Ki3 5
sinwi. Note that the value rui is the great circle distance
between the lightning and the ith sensor. Using (4) and
a standard trigonometric identity, (3) can be written as
(for i 5 1, 2, . . . , n)

c c c c
cos t cos t 1 sin t sin ti ir r r r

5 K cosw cosl 1 K cosw sinl 1 K sinw. (5)i1 i2 i3

At this point, several different approaches can be used
to obtain a final solution. For example, we can divide
(5) by sin(ct/r) to obtain the linear system

gi 5 Ki1 f1 1 Ki2 f2 1 Ki3 f3 1 Ki4 f4, (6)

where gi 5 sin(cti/r), f 1 5 cosw cosl/sin(ct/r), f 2 5
cosw sinl/sin(ct/r), f 3 5 sinw/sin(ct/r), and f 4 5
cot(ct/r). The additional coefficient is Ki4 5 2cos(cti/r).
The equations in (6) can be written in matrix form as g
5 Kf, with direct solution f 5 K21g (n 5 4) and least
squares solution f 5 (K̃K)21K̃g (n . 4). Here, the tilde
indicates matrix transposition. The source location and
time of occurrence can be extracted from f as follows:

f f3 221 21w 5 tan cosl , l 5 tan ,1 2 1 2f f1 1

r
21t 5 cot f . (7)4c

Since K 5 K(wi, li, ti), each element of K depends
on where the TOA network is located on the surface of
the earth and on what convention is used for timing
lightning radio waves (e.g., UTC converted to seconds,
GPS, TAI). Numerical variation in K implies variation
in the eigenvalues of K and variation in the elements of
K21 or (K̃ K)21. This ultimately means that numerical
magnification of the measurement errors in g depends
on where the network is located (see Twomey 1977,
chapter 6 for a detailed discussion of error magnification
in inversion problems). Since in this writing we will
want to characterize retrieval errors (see sections 3, 5,
and 6 to follow), for experimental networks located any-
where in the world, it is beneficial to avoid using the
solution scheme in (7) in favor of a more ‘‘standardized
matrix.’’ That is, one whose matrix elements do not
differ between, say, a hypothetical network in Italy (that
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recorded times by converting a UTC format into sec-
onds) compared to one in Japan (that recorded time in
GPS seconds).

To obtain the standard matrix, we will rotate the spa-
tial coordinates in the problem and translate the tem-
poral coordinate.

Note that the form in (5) as well as ui are invariant
under spatial coordinate system rotations. If one rotates
the coordinate system (û, v̂, ŵ) into (û9, v̂9, ŵ9) by an
(Euler) angle l1 about ŵ, and then (û9, v̂9, ŵ9) is rotated
into (û*, v̂*, ŵ*) by an Euler angle w1 about 2v̂9, (5)
maintains the same form in the starred system

c c c c
cos t cos t 1 sin t sin ti ir r r r

5 K* cosw* cosl* 1 K* cosw* sinl*i1 i2

1 K* sinw*. (8)i3

Here, ( , , ) are identical to the expressions forK* K* K*i1 i2 i3

(Ki1, Ki2, Ki3) but with (wi, l i) replaced by ( , ).w* l*i i

In (5), latitude and longitude are referenced to the
equator and prime meridian, but in (8), all locations are
expressed relative to site 1. This fact will help simplify
the mathematics, since ( [ 0, [ 0). If one noww* l*1 1

invokes the convention that site 1 excites at t1 5 0, the
transit equation in (8), evaluated at i 5 1, is

c
cos t 5 cosw* cosl*. (9)

r

Since t1 5 0 and causality dictates that t # t1, then t #
0 must hold. Hence, sin(ct /r) 5 2|sin(ct /r)| 5
2(sin2ct/r)1/2 or

1/2c c
2sin t 5 2 1 2 cos t1 2r r

2 2 1/25 2(1 2 cos w* cos l*) . (10)

Using (9) and (10) to eliminate time in favor of space,
(8) becomes (for i 5 2, 3, . . . , n)

ai21 5 Li21,1h1 1 Li21,2h2 1 Li21,3h3, (11)

where ai21 5 sin(cti/r), Li21,1 5 2cosw* cosl*i i

cos(ct2/r), Li21,2 5 , Li21,3 5 , h1 5cosw* sinl* sinw*i i i

C* cosw* cosl*, h2 5 C* cosw* sinl*, h3 5 C* sinw*,
and C* 5 2(1 2 cos2w* cos2l*)21/2. The linear system
in (11) can be written in matrix/vector form as

a 5 Lh, (12)

with direct and least squares solutions given respec-
tively as

21h 5 L a (n 5 4),
21˜ ˜h 5 (LL) La (n . 4). (13)

Unlike the variable K matrix, L 5 L( , , tk) doesw* l*k k

not depend on where the network is located on the
earth (e.g., Italy or Japan). It depends only on the spe-
cific network geometry, that is, on the location of the
sites relative to site 1 and on the arrival times recorded
at each site. In other words, if the hypothetical exper-
imenters in Italy and Japan were to pick the same net-
work geometry for their respective networks and if
each network measured identically the same set of ar-
rival times tk , then the L matrix used by the Italian
experimenters would be identical to the L matrix used
by the Japanese. Hence, given the network geometry
and a set of measurements tk , (12) is a standardized
linear system that produces the same lightning location
retrieval error results no matter where the network is
located on the surface of the earth.

Assuming that the Italian and Japanese networks have
identical network geometries, we next clarify what con-
ditions are sufficient in order that the set of times tk

from the Italian network are equivalent to the Japanese
network. First, the two groups of experimenters should
use the same units of time (e.g., seconds). Second, these
times should be referenced to the excitation time of ‘‘site
1’’ (say the central site of each network). Third, the
measurement timing errors produced from each network
must be the same. Fourth, even if the above conditions
are met, lightning location relative to each network is
important. For example, a lightning source 100 km due
east of the Italian network would produce a set of arrival
times that would differ from a source 300 km due north
of the Japanese network. However, if each source is 100
km due east of each network, the arrival times would
be the same. If all four of these conditions are met, the
L matrix for these two hypothetical networks would be
identical, and the spatial distribution of lightning lo-
cation retrieval errors in and around the networks
would be the same.

Continuing with our ‘‘standardized’’ solution process,
the location information is extracted from the compo-
nents of h as

h h3 221 21w* 5 tan cosl* , l* 5 tan . (14)1 2 1 2h h1 1

By inspecting the standard Euler angle transformations
between the coordinate system (û , v̂ , ŵ) and
(û*, v̂*, ŵ*), the source location (w, l) relative to the
prime meridian and equator can be written in terms of
(w*, l*). With the aid of (9), the final analytic (‘‘LS
method’’) solution is

21w 5 sin (K cosw* cosl* 1 cosw sinw*),13 1

K cosw* cosl* 1 cosl cosw* sinl* 2 K sinl sinw* r12 1 13 121 21l 5 tan , T 5 T 2 cos (cosw* cosl*), (15)11 2K cosw* cosl* 2 sinl cosw* sinl* 2 K cosl sinw* c11 1 13 1
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FIG. 2. Lightning location retrieval errors (in km) from a flat-earth
retrieval scheme (LP method) assuming no measurement timing errors
[adapted from Koshak et al. (2000)]. These results are inferior to the
spherical-earth scheme (LS method), which produced retrieval errors
below 20 cm.

where T1 is the absolute time (e.g., in GPS seconds)
that site 1 is excited by the lightning radio ground wave.
Note that the principal values of the inverse cosine func-
tion are used, that is, 0 # cos21(cosw* cosl*) # p,
2p/2 , l* , p/2, 2p/2 , w* , p/2, and T is the
absolute time-of-occurrence of the lightning ground
wave emission, where T , T1.

We end this section by surveying some mathematical
nuances associated with inverting (6) and (11). Since
in (6) each component of f is divided by sin(ct/r), the
convention t1 [ 0 implies that the values of t 5 2mpr/c,
m 5 0, 1, 2, . . . will produce values of f (as well as h)
that are undefined. That is, f is undefined when m 5 0
(the ground flash strikes site 1), and m 5 1 (the flash
strikes a distance ct 5 pr ù 20 000 km away from site
1). If this is undesirable to the experimenter, the sin-
gularities can be shifted by dividing (5) by cos(ct/r)
rather than sin(ct/r). In this case, the ‘‘new g vector’’
would have elements cos(cti/r), and the ‘‘new K matrix’’
would be identical to the old except that each element
of the fourth column would change to 2sin(cti/r). The
singularities in the ‘‘new f’’ now satisfy the condition
cos(ct/r) 5 0, or t 5 2mpr/(2c), m 5 1, 3, 5, . . . .
This means that the new f vector is undefined for sources
a distance ct 5 pr/2 ù 10 000 km away from site 1,
but a singularity no longer occurs for ground flashes
that strike site 1. However, this shift is not beneficial
when the mean sensor baseline is small and the lightning
is close to the network. In this case, the fourth column
of the new K matrix is nearly a zero vector. This means
that the new K matrix is ill-conditioned, and attempting
to invert it would lead to excessive magnification of
timing data errors.

Finally, we make mention of the fact that if a ground
flash did strike site 1, the experimenter would in fact
have ‘‘located’’ the lightning and would most assuredly
be more concerned about equipment repairs rather than
mathematical intractabilities. In this sense, division of
(5) by sin(ct/r) is preferable over division by cos(ct/r),
since the former approach places the singularity twice
as far away from site 1.

3. LS method tests and comparisons

In order to test and compare the LS method results
provided in (15) with the earlier LP method, it is first
assumed that all sources and sensors are located on the
surface of a spherical earth. A known source location
is selected, and the true (spherical) arrival times at each
sensor due to the source are generated. Simulated mea-
surements are produced by adding uniform random er-
rors to the computed arrival times. Next, the simulated
measurements are analyzed with the LS method, and
the retrieved solution is compared with the known
source to compute the location retrieval error. This pro-
cess is repeated several times at each known source
location to generate location retrieval error statistics for
that location. Other known source locations are similarly

tested so that the spatial distribution of location error
can be obtained over a particular region.

As in the study by Koshak et al. (2000), four ALDF
sites in the region of Darwin, Australia, have been con-
sidered. These sites were used as part of the Maritime
Continent Thunderstorm Experiment (MCTEX) de-
scribed in Keenan et al. (1994, 1996). The known (com-
puter-generated) lightning source locations were defined
on a grid that had a resolution of 0.028 in latitude and
longitude and that spanned a 68 3 68 analysis region.

Before adding random errors to the arrival times, a
single known source at each grid location was analyzed
with the LS method using the exact (error free) values
of ti. This was done to check the basic mathematical
validity of the LS method. Once again, we emphasize
the fact that the arrival times were computed assuming
the earth was a perfect sphere; that is, the arrival time
is the great circle distance between the known source
and the sensor, divided by the speed of light. As ex-
pected, the LS method performed quite well. Location
retrieval errors for the entire 68 3 68 region were below
20 cm. This is substantially less than the retrieval errors
found in the LP method described in Koshak et al.
(2000) and provided in Fig. 2. Here, the LP method
cannot exactly retrieve source locations because arrival
times (and magnetic bearings) are formulated on a flat
earth surface.

In the second test, 100 retrievals at each grid location
were considered. For each of the 100 retrievals, a dis-
tinct error (chosen from a uniform random distribution)
was added to each of the four arrival times. Figure 3
shows the retrieved location errors for the LP and LS
methods when the uniform random distribution had er-
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FIG. 3. Lightning location retrieval errors (in km) when a random
error between 6100 ns is added to the simulated arrival time data:
(a) LP method and (b) LS method.

FIG. 4. Lightning location retrieval errors (in km) when a random
error between 6300 ns is added to the simulated arrival time data:
(a) LP method and (b) LS method.

ror limits of 6100 ns. The mean retrieval error of the
100 trials is plotted for each grid location across the
analysis region. Again, the LP retrieval errors (Fig. 3a)
are larger than the LS retrieval errors (Fig. 3b) for distant
sources. Figure 4 shows how well each method performs
when the simulated measurement errors vary between
6300 ns.

In general, we have found that the more distant the
lightning source, the more the LS method outperforms
the LP method, since earth sphericity effects (such as
those shown in Fig. 2) become increasingly important.
However, for the relatively small 68 3 68 region, the
effects of timing errors (e.g., 6100 and 6300 ns) are
more significant than the effects of earth sphericity, and
the LP method performs almost as well as the LS meth-

od. In the following section, we will consider a much
larger analysis region and more distant lightning sources
to determine the effects of oblate earth curvature on
location retrieval accuracy.

4. IO method for oblate spheroidal earth

By perturbing the spherical earth model results of the
LS method described in section 2, we obtain immediate
extensions to an oblate spheroid. In so doing, the per-
turbation provides a quantitative means for directly as-
sessing oblate effects. The set of perturbed equations
are solved by a Newton-type iteration, and we call the
approach an iterative oblate (IO) method. Such iterative
procedures have excellent convergence properties if a
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good initial guess is available. Since the earth is very
nearly a sphere, the LS method provides an excellent
initial guess of lightning source location.

Letting Si(w, l) denote the distance along a geodesic
of an oblate spheroidal earth between the ith TOA sensor
and a lightning located at latitude w and longitude l,
we may write the transit equation as

Si(w, l) 5 c(ti 2 t), (16)

where c is the speed of the ground wave and t is the
time-of-occurrence of the cloud-to-ground discharge.
Next, we use the results of the LS method provided in
(15) to obtain the initial estimates (w (0), l (0), t (0)) to the
true lightning source parameters (w, l, t). Denoting the
errors in these estimates as dw [ w 2 w (0), dl [ l 2
l (0), and dt 5 t 2 t (0), we may rewrite (16) as

Si(w (0) 1 dw, l(0) 1 dl) 5 c[ti 2 (t (0) 1 dt)]. (17)

Expanding the left-hand side of (17) in a Taylor series
and neglecting higher-order terms gives the approxi-
mative set of equations

]S ]Si i(0) (0)S (w , l ) 1 dw 1 dli ) )]w ]l(0) (0) (0) (0)(w ,l ) (w ,l )

(0)ù c[t 2 (t 1 dt)], (18)i

for sensors i 5 1, 2, 3, 4. Hence, (18) constitutes a (4
3 3) linear system of equations in the three unknowns
(dw, dl, dt). As such, it is an overdetermined system
that can be solved in a least squares sense. Because we
have truncated the Taylor series, (18) is a set of ap-
proximative equations. Hence, inversion of the (4 3 3)
system provides only approximations to the exact cor-
rections (dw, dl, dt). Nonetheless, the three approxi-
mative corrections, which we denote as (dw (0), dl (0),
dt (0)), improve upon the initial LS method estimates
(w (0), l (0), t (0)). Furthermore, we need not stop after one
iterative update of the solution but can carry out a total
of N 5 n 1 1 iterations. With these ideas in mind, our
(4 3 3) system can be written as

(n) (n) (n)   ] S ] S c c(t 2 t ) 2 S (w , l )w 1n l 1n 1 1(n) dw
(n) (n) (n)    ] S ] S c c(t 2 t ) 2 S (w , l )w 2n l 2n 2 2(n)dl 5 ,     
(n) (n) (n)] S ] S c c(t 2 t ) 2 S (w , l ) w 3n l 3n 3 3(n)dt     (n) (n) (n)] S ] S c c(t 2 t ) 2 S (w , l )w 4n l 4n 4 4   

(19)

where ]vSin is shorthand notation for ]Si/]v evaluated
at (w (n) , l (n)), with v 5 w, l. Expressing the matrix as
An, the column vector on the left as xn, and the column
vector on the right-hand side (rhs) as yn, we can write
(19) as

Anxn 5 yn. (20)

Unlike the approximative form given in (18), this (4 3
3) linear system is exact. The least squares iterative

update of the oblate earth solution defined by bn11 5
(w (n11), l (n11), t (n11)) can now be written as

bn11 5 bn 1 (ÃnAn)21Ãnyn. (21)

Iteration is continued until |xn| 5 |(dw (n) , dl (n) , dt (n))| is
less than a prescribed tolerance; the last term in (21) is
of course the least squares solution of (20) for xn. Exact
representations for the derivatives in An may be used,
but we have used simple secant-type approximations.
For example, one can use ]Si/]l ù [Si(w, l 1 0.00258)
2 Si(w, l 2 0.00258)]/0.0058. In either case, the deriv-
atives of Si are well behaved.

Explicit expressions for the needed geodesic distances
Si(w, l) are obtainable using variational calculus on an
oblate spheroid (see the appendix). In this study, we
have opted to use the computationally efficient forms
provided in Sodano (1965; appendix A), where geodesic
distances are computed to within a few centimeters ac-
curacy.

5. Importance of oblate spheroidal corrections

The IO method described in section 4 converges rap-
idly and is highly accurate when error-free arrival times
are analyzed. Consider a fictitious (high gain) network
of four stations located at Chattanooga, Tennessee
(35.068, 285.308); Florence, Alabama (34.798,
287.678); Huntsville, Alabama (34.738, 286.598); and
Birmingham, Alabama (33.528, 286.798). If a lightning
event occurs in Chicago, Illinois (41.898, 287.658), the
distances to the four stations along geodesics are
785.319 770 339, 788.125 066 758, 800.148 006 314,
and 932.073 066 608 km, respectively. The lightning
radio wave will arrive at Chattanooga first, followed by
Florence, Huntsville, and Birmingham. If we say it ar-
rives at Chattanooga at 0 ms, then it arrives at the other
three sites at 9.357 461 62 ms, 49.461 671 17 ms, and
489.516 304 88 ms, respectively. The LS method so-
lution is (w 5 41.890 763 668, l 5 287.649 892 068,
t 5 22620.254 395 ms). In this case, the distance be-
tween the true source location and retrieved location is
about 85.29 m, and the error in the retrieved time-of-
occurrence is about 0.71 ms. Here, the effects of mea-
surement and propagation errors are not considered in
this purely mathematical test. In addition, the 1984
World Geodetic System Earth Ellipsoid (WGS-84 El-
lipsoid), having semimajor (6378.137 km) and semi-
minor (6356.752 314 2 km) axes, were taken to be ab-
solutely accurate.

Just one iteration of the IO method provides the im-
proved solution (41.889 999 9138, 287.650 000 011 28,
22619.544 754 ms). The distance error is now only
about 9.7 mm, and the time-of-occurrence error is 32.4
ps.

To further examine the importance of oblate effects,
we consider the 4-station Darwin network discussed ear-
lier but view a much larger (908 3 908) region centered
about the central ALDF site (site 1). We compute both
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FIG. 5. The spatial distribution of the geodesic distance (in km)
from site 1 assuming an oblate spheroidal earth geometry. The dis-
tribution was obtained by using a computationally efficient noniter-
ative method introduced by Sodano (1965, appendix A).

FIG. 6. The spatial distribution of the difference (oblate-earth dis-
tance minus spherical-earth distance, in km) to site 1.

FIG. 7. The spatial distribution of location retrieval errors (in km)
obtained from the LS method when simulated arrival times are com-
puted on an oblate earth. No simulated measurement errors were
added to the arrival times. Since the LS method assumes a spherical
earth geometry, the analysis of oblate-earth arrival times must pro-
duce retrieval errors. By comparison, the IO method discussed in
section 4 of the text produces location retrieval errors all below 20
cm.

the spherical earth great circle distance and the oblate
earth geodesic distance between site 1 and (several) fic-
titious lightning source locations. The source locations
are defined on a grid that spans the entire (908 3 908)
area and that has a grid resolution of 18. In other words,
we computed the spatial distribution of the spherical
and oblate geodesic distances from site 1.

The oblate distances to site 1 are shown in Fig. 5. As
expected, a concentric geometry is obtained, that is, as
one moves farther from site 1, the geodesic distance
increases. At this map scale, the corresponding distri-
bution of spherical distances to site 1 looks essentially
the same. To emphasize the discrepancy between the
two, the difference (oblate distance minus spherical dis-
tance) is provided in Fig. 6. Dividing this distribution
by the speed of light, c, indicates how the arrival times
would differ due solely to earth geometry differences.

However, these results do not provide specific infor-
mation as to how oblate effects directly affect a source
location retrieval. To determine this, we have analyzed
each fictitious source from the grid using the LS method
described in section 2. When spherical earth (great cir-
cle) arrival times are used, the LS method retrieves
source location to better than 20 cm. There were no
assumed arrival time errors and only minimal computer
truncation error, since double precision floating point
computations were performed. However, when the LS
method is used to analyze the corresponding oblate earth
arrival times produced from the same set of fictitious
sources (again with no simulated arrival time error), the
location retrieval errors shown in Fig. 7 are obtained.
Clearly, the penalty for neglecting oblate effects within

the LS method is nontrivial. The maximum retrieval
error in Fig. 7 is 13.70 km.

By comparison, we applied the IO method discussed
in section 4 to analyze the same oblate earth arrival
times and found that location retrieval errors were below
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FIG. 8. Same as in Fig. 7 but with a modified and more symmetric
network geometry. This plot explicitly shows that network geometry
significantly modulates the spatial distribution of location retrieval
error. Again, the IO method discussed in section 4 of the text produces
location retrieval errors all below 20 cm.

20 cm. Less than five Newton-type iterations per source
were used to achieve this retrieval accuracy. In the ab-
sence of instrument timing errors, the IO method ac-
curately accounts for all oblate effects.

At this point, one might wonder why the errors in
Fig. 7 are not spatially distributed like the difference
errors provided in Fig. 6. That is, one might expect
location retrieval errors to be largest where the differ-
ences plotted in Fig. 6 are greatest. This, however, is
not true. In reality, the sensor network geometry modifies
the spatial distribution of retrieval error. Or, equiva-
lently, the accuracy of the LS solution provided in (15)
depends on source location and network geometry. To
explicitly show this, we have reanalyzed all the same
source locations using a sensor network that is the same
typical size as before but that has a perfect symmetry
about a north–south line. More specifically, we rotated
the old network clockwise about the central site. We
then adjusted the locations of the outer sites so that they
were each about 111 km from the central site and evenly
spaced in azimuth from one another.

The new symmetric network and the new location
retrieval errors are provided in Fig. 8. The maximum
retrieval error is now only 7.83 km (compared to the
13.70-km value of Fig. 7). Note that many features of
the location error distribution in Fig. 7 have rotated
clockwise in accordance to the clockwise rotation of the
network. Since the new network is more symmetric than
the old, the new location error distribution is more sym-
metric than in Fig. 7. Clearly, the spatial distribution of
retrieval errors is intimately tied to network geometry.

Such effects are not unique to this problem. Network

geometry was seen to influence flat-earth (LP method)
solutions, especially for sources located on outer sensor
baselines, where retrieval errors are relatively large (Ko-
shak et al. 2000). Similarly, we see relatively large lo-
cation errors along the outer sensor baselines in Figs.
7 and 8.

As we have shown, the neglect of earth oblateness in
the LS method results in nontrivial location errors. How-
ever, it is more realistic to ask the question: Are oblate
effects important in the presence of instrument arrival
time errors? To be complete, one should include all
errors in this question, not just those due to instrument
uncertainties. For example, one could include propa-
gation errors that are related to inhomogeneities in earth
surface conductivity, terrain scattering, and any differ-
ences in pathlength due to the fact that the radio wave
might actually reflect off the ionosphere rather than
propagate along the surface. However, inclusion of these
errors is beyond the scope of this work.

In order to assess the importance of oblate effects in
the presence of instrument timing errors alone, we an-
alyzed 100 sources at each grid location across the (908
3 908) region. A random timing error was added to the
simulated arrival times so that the mean location re-
trieval error for the 100 sources at a particular grid
location could be computed. This process was repeated
for all grid locations in the (908 3 908) region to obtain
the spatial distribution of location retrieval error.

For illustrative purposes, we began with an unreal-
istically small (610 ns) instrument arrival time error.
The error is selected from a uniform random distribution
in the interval [210 ns, 10 ns]. The results of the LS
and IO methods are provided in Fig. 9. Note that the
IO method improves upon the LS method results; how-
ever, the improvement is not as pronounced as when
exact arrival times were used (i.e., Fig. 7 had errors in
excess of 10 km, while the IO method produced errors
below 20 cm). Note also that the error pattern in Fig.
9a resembles that in Fig. 7. This means that the effects
of timing errors are not large enough to completely ob-
scure (network-geometry modulated) oblate earth ef-
fects. The error pattern in Fig. 9b does not resemble the
error pattern in Fig. 7 because the IO method accounted
for oblate effects in the former.

When the random error is increased to 6100 ns, we
obtain the location errors shown in Fig. 10. Because of
the larger timing error, the oblate earth effects in Fig.
10a are more obscured (i.e., the error pattern in Figs.
9a and 7 are more similar than between Figs. 10a and
7). Furthermore, a comparison between Figs. 10a and
10b indicates that the LS results are better than the IO
results for many (but not all) source locations. For sourc-
es located where oblate earth effects are large (as judged
by Fig. 7), the iterations of the IO method tend to im-
prove LS results. However, where oblate earth effects
are small, the iterations tend to worsen the LS results.

Mathematically, instrument timing errors degrade the
accuracy of the initial solution estimate afforded by the
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FIG. 9. The spatial distribution of location retrieval errors (in km)
assuming an unrealistically small random timing error of 610 ns
using the (a) LS method and (b) IO method. Note that the IO method
is an improvement over the LS method.

FIG. 10. The spatial distribution of location retrieval errors (in km)
assuming a random timing error of 6100 ns using the (a) LS method
and (b) IO method. Here, unlike in Fig. 9, the IO method does not
improve upon the LS method results for many source locations. This
is due to the additional timing error of this simulation.

LS method. In addition, the timing errors add errors
to each iterative correction term (ÃnAn)21Ãnyn in (21),
where n 5 0, 1, 2, 3, 4. Specifically, (19) shows that
the 4-vector yn depends directly on arrival time data.
Therefore, yn in (21) should be replaced with yn 1 en

when instrument timing errors are present, where en is
an error 4-vector. The error added to each solution iterate
is then given by (ÃnAn)21Ãnen.

Interestingly, the (3 3 4) matrix (ÃnAn)21Ãn depends
on the location (w (n) , l (n)) but not directly on arrival
time data. Nonetheless, the mathematical nature of this
matrix plays a role in determining how the errors en

affect solution accuracy. First, the condition of the ma-

trix ÃnAn is important. If it is ill conditioned, it will
have small eigenvalues, and the elements of (ÃnAn)21

will be large, thereby leading to large solution errors.
Fortunately, in all of our computer simulations, we saw
no evidence of an ill-conditioned nature in ÃnAn. Sec-
ond, the matrix (ÃnAn)21Ãn defines a linear transfor-
mation that maps a 4-vector en into a 3-vector (dn). We
may express this mapping as dn 5 M(w (n) , l (n))en, where
M(w (n), l (n)) [ (ÃnAn)21Ãn. Given n, the set of error
vectors satisfying the property M(w (n) , l (n))en 5 0 is
called the nullspace of the linear transformation. Since
this homogeneous system of linear equations has more
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TABLE 1. A detailed look at the LS and IO method results for a source located at 108 latitude and 1508 longitude when instrument timing
errors are 0 and 6 100 ns. The WGS-84 earth ellipsoid defined in section 5 was used. The italicized numbers (shown for n 5 0) are the
retrieved locations produced by the LS method, and the bold numbers are the final retrieved locations produced by the IO method. Full
double precision floating point numbers are not provided here but were used in all computer calculations. For no timing error, the LS method
has 1.332 km location error compared with 0 km location error for the IO method. For 6100-ns timing error, the respective location errors
are 19.357 km and 54.536 km. Because oblate earth effects are relatively small at this source location, the IO method does not improve
upon the LS method when timing errors are added.

Iteration (n) w(n) dr(n) l(n) dl(n)

0-ns timing error
0
1
2
3
4
—

9.989495562
9.999994113

10.000000000
10.000000000
10.000000000
10.000000000

0.010498551
0.000005887
0.000000000
0.000000000
0.000000000

—

149.994173556
149.999995916
150.000000000
150.000000000
150.000000000
150.000000000

0.005822359
0.000004084
0.000000000
0.000000000
0.000000000

—

6100-ns timing error
0
1
2
3
4
—

9.863585935
9.619625723
9.622093288
9.622093760
9.622093760
9.622093760

20.243960212
0.002467566
0.000000472
0.000000000
0.000000000

—

149.890496401
149.681210750
149.683532287
149.683532735
149.683532735
149.683532735

20.209285651
0.002321537
0.000000448
0.000000000
0.000000000

—

TABLE 2. Same as in Table 1 except for a source located at 108 latitude and 1108 longitude. For no timing error, the LS method has a
7.220-km location error compared with 0-km location error for the IO method. For 6100-ns timing error, the respective location errors are
47.621 km and 5.113 km. Because oblate earth effects are relatively large at this location, the IO method improves upon the LS method.

Iteration (n) w(n) dr(n) l(n) dl(n)

0-ns timing error
0
1
2
3
4
—

9.950425087
9.999933495

10.000000000
10.000000000
10.000000000
10.000000000

0.049508407
0.000066505
0.000000000
0.000000000
0.000000000

—

110.042472365
110.000063496
110.000000000
110.000000000
110.000000000
110.000000000

20.042408869
20.000063495

0.000000000
0.000000000
0.000000000

—

6100-ns timing error
0
1
2
3
4
—

9.683918714
9.960620387
9.963489736
9.963489782
9.963489781
9.963489783

0.276701673
0.002869349
0.000000046
0.000000000
0.000000002

—

110.292633112
110.031336279
110.028307835
110.028307693
110.028307694
110.028307692

20.261296833
20.003028444
20.000000141

0.000000000
20.000000002

—

unknowns (four) than equations (three), it has infinitely
many solutions in addition to the trivial solution (en 5
0). A parametric solution of the homogeneous system
(see Anton 1984, chap. 1) provides the type (i.e., the
mathematical form) of error vectors that would be nul-
lified by M. Even though these error vectors mathe-
matically exist, it is unlikely that an actual error vector
from a real data inversion problem would be of the exact
form required for complete nullification. Nonetheless,
it is so noted that error nullification is possible.

To further demonstrate the nature of the IO method,
we have collected iterative results in tabular form for
two specific source locations; one source location is
associated with small oblate effects and the other with
large. The relative strength of oblate effects, ‘‘small’’
or ‘‘large,’’ are determined from Fig. 7. Table 1 shows

results for a source located at (w, l) 5 (108, 1508) for
both 0 and 6100-ns instrument uncertainties. Figure 7
indicates that oblate effects are relatively small for this
location. As indicated above, the IO method does an
excellent job of improving LS method results when
there are no instrument timing errors. The LS method
had a location retrieval error of 1.332 km, but the IO
method had effectively 0 km of error. However, with
6100-ns timing error, the LS method produces an error
of 19.357 km, and the IO method degrades this result
to 54.536 km. Table 2 shows results for a source located
at (w, l) 5 (108, 1108), where oblate effects are large.
Once again, for no instrument timing error, the IO meth-
od has 0-km retrieval error compared with a 7.220-km
LS method retreival error (the LS results are particularly
poor here because oblate effects are large). In the pres-
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FIG. 11. The location retrieval error (in km) assuming an instrument
timing error of 6300 ns for the (a) Darwin network (b) Brazil net-
work.

ence of a 6100-ns timing error, the LS method retrieval
error jumps to 47.621 km, but the IO method had a
retrieval error of only 5.113 km.

In summary, attempting to correct for oblate earth
effects is not always prudent. One must first consider
network geometry, the magnitude of instrument (and
other propagation) errors, and source location. When
network-modulated oblate earth effects are small rela-
tive to the adverse effects of instrument timing errors,
the LS method retrieval error plus the accumulated er-
rors due to IO method iterations exceed the LS method
retrieval error. In these cases, application of the IO meth-
od degrades the basic LS solution. Convergence is ob-
tained with few (e.g., 5) Newton-type iterations, but the
convergence is toward a false solution point. When net-
work-modulated oblate earth effects are large relative
to the effects of timing errors, the IO method improves
LS results.

6. Results for Darwin and Brazil TOA networks

There is no overall advantage in applying the iterative
update scheme in (21) when (more realistic) timing er-
rors of 6300 ns are assumed. In this case, the large
timing errors make it difficult to correct for even rea-
sonably large oblate effects. However, the LS method
still provides a reasonably accurate solution. Figure 11
shows the LS method location retrieval error for two
different measurement networks when a timing error of
6300 ns is assumed. Figure 11a is for the familiar Dar-
win network that we considered in section 5 above, and
Fig. 11b is for a new network located in Brazil. Like
the Darwin network, the Brazil network consists of four
ALDF sensors that were developed to support ground-
validation activities of the OTD and LIS space-borne
lightning detectors. The Brazil network was recently
installed and is currently operational.

It is interesting that the larger sensor baseline of the
Brazil network significantly improves the location ac-
curacy of distant sources. The 10-km error contour in
Fig. 11b (i.e., the contour that approximately matches
the characteristic resolution of the OTD low earth or-
biting lightning detector) encompasses a significant
fraction of the South American continent. However, the
10-km error contour of Fig. 11a bounds a much smaller
area. The maximum location retrieval error across the
entire (908 3 908) region of Fig. 11a was 291.8 km, but
it was only 82.3 km in the (908 3 908) region of Fig.
11b.

7. Summary

A method was introduced to retrieve the location and
time-of-occurrence of ground flashes using a network
of four or more TOA sensors. The mathematical solution
is derived in spherical coordinates and fully accounts
for earth sphericity. Solving for the unknown lightning
source is done by simply inverting (12) and then ap-

plying (14) and (15). The method is computationally
quick and can be implemented using just a few lines of
computer code. With assumed instrument timing errors
of 6300 ns, overall lightning location retrieval error
from the method is within tens of kilometers. This is
small given the large (908 latitude 3 908 longitude)
region and relatively short sensor baselines that we have
considered. Location errors less than 10 km are also
evident over a large subregion. Because earth curvature
is accounted for, the spherical earth method is more
accurate than earlier flat earth methods introduced in
Koshak et al. (2000). However, if instrument arrival time
errors are sufficiently large and/or the analysis region



198 VOLUME 18J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

sufficiently small, no appreciable difference in the re-
sults of the two methods are seen.

We emphasize that the spherical earth method (LS
method) represents an algebraic solution. Hence, we do
not need to employ nonlinear numerical methods to ob-
tain an answer. For example, we do not need to perform
a computer search to determine the solution parameters
that minimize a nonlinear x2 function. Such a search
can lead to erroneous solutions if the presence of mea-
surement errors produce multiple relative minima in the
x2 surface. Currently, arrival time and magnetic bearing
data obtained from the National Lightning Detection
Network (NLDN) are simultaneously analyzed by min-
imizing a x2 function (Cummins et al. 1995, 1998). If
magnetic-bearing data can be implemented into our
spherical formalism, perhaps by considering the analytic
work of Orville (1987), then minimization of a x2 func-
tion would prove to be unnecessary.

Finally, we have extended our spherical earth ap-
proach to account for the effects of earth oblateness
using a simple Newton-type iterative approach. Retriev-
al errors on an oblate surface using this approach are
below 20 cm when exact (error free) simulated arrival
time data are used. To the best of our knowledge, this
has not been previously accomplished. For example, the
x2 approach used for the NLDN uses a best-fit sphere
approximation to partially account for oblate effects (K.
L. Cummins 1999, personal communication). Further-
more, we have shown that small amounts of instrument
timing error (;100 ns) can prevent Newton iterations
from correcting for small (,5 km) oblate effects. In
fact, the Newton iterations can actually degrade the LS
results. In effect, we have demonstrated that the ‘‘cure’’
(IO method) is worse than the ‘‘affliction’’ (oblate ef-
fects) when the effects of instrument uncertainties are
large in comparison to (network-modulated) oblate earth
effects. Nonetheless, the IO method works exceptionally
well when instrument error is greatly reduced and re-
gions possessing large oblate effects are considered.

Given time, improvements in technology will reduce
instrument uncertainties, thereby making the IO method
progressively attractive. However, even if timing errors
could be completely eliminated, radio wave propagation
errors (such as those mentioned in section 5) would need
to be considered relative to oblate effects. Taking all of
this into consideration, we have employed the LS meth-
od and a present-day instrument uncertainty of 6300
ns to determine the location retrieval error over a large
region for two different TOA networks. We found that
the TOA networks could ground-truth OTD/LIS space
sensors over a large (continent-scale) area and that larger
baseline networks offer greater area ground-truth cov-
erage.

In the future, the authors intend to use the LS and
IO methods to analyze a wide range of thunderstorms
and to relate the results to other independent datasets
such as OTD, LIS, radar, Lightning Detection and Rang-
ing (LDAR), and data from the North American Light-

ning Detection Network (NALDN) discussed in Cum-
mins et al. (1999). Again, more elegant solutions that
incorporate magnetic bearing data but that still retain a
linear matrix formulation will be investigated.
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APPENDIX

Variational Method for Verifying Sodano’s
Geodesic Distance Calculations

In order to verify the accuracy of the computationally
efficient results of Sodano (1965, appendix A), expres-
sions are needed for the distances Si(w, l). Geodesics
on a sphere are great circles, and geodesics on an oblate
spheroid may be calculated using the calculus of vari-
ations. Oblate spheroidal coordinates (j, h, l) are re-
lated to Cartesian coordinates (x, y, z) by

x 5 g coshj cosh cosl, y 5 g coshj cosh sinl,

z 5 g sinhj sinh, (A1)

where j . 0, 2p/2 # h # p/2, and 0 # l , 2p. Here,
g is a constant, and we will be working on a constant
oblate spheroidal surface, j. The products g coshj 5 A
and g sinhj 5 B will be taken to be the mean equatorial
radius and polar radius of the earth, respectively. The
transformation between spherical latitude w and oblate
spheroidal latitude h is

A
tanh 5 tanw. (A2)

B

Spherical and oblate longitudes are identical and are
denoted by the variable l.

The arc length of a geodesic on the surface of an
oblate spheroid may be represented by the integral

2l2 dh dh
S 5 dl P 1 2Q 1 R , (A3)E 1 2! dl dl

l1

where l1 and l2 are longitude coordinates of the end-
points of the arc, and we have the functions
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2 2 2
]x ]y ]z

2 2P 5 1 1 5 A cos h,1 2 1 2 1 2]l ]l ]l

]x ]x ]y ]y ]z ]z
Q 5 1 1 5 0,

]l ]h ]l ]h ]l ]h

2 2 2
]x ]y ]z

R 5 1 11 2 1 2 1 2]h ]h ]h

2 2 2 25 A sin h 1 B cos h. (A4)

The Euler–Lagrange equation for this problem takes on
the usual form

] f d ] f
2 5 0, (A5)1 2]h dl ]h9

where f 5 P 1 2Qh9 1 R(h9)2 . The derivative inÏ
the integrand of (A3) can be written as

dh R
5 C , (A6)

2!dl P 2 CP

where C is a constant that is determined by a pair of
points that the geodesic passes through. If h changes
monotonically with l, then C is the solution to

h2 2 2 2 2C A sin h 1 B cos h
l 2 l 5 dh sech.2 1 E 2 2 2!A A cos h 2 C

h1

(A7)

Here, C is bounded by A cos(min[|h1|, |h2|]). If (A7)
cannot be satisfied, then h does not change monotoni-
cally with l. This situation occurs, for example, if one
wants to get from a point in the United States to a point
in Asia with the same latitude. One would make a north-
ward excursion first. In such cases, C would be chosen
to satisfy

21cos C /A2 2 2 2 2C A sin h 1 B cos h
l 2 l 5 dh sech.O2 1 E 2 2 2!A A cos h 2 Cj51 h j

(A8)

The equations for obtaining C are transcendental, and
they must be solved numerically. A Newton–Rhapson
or secant method can be applied. Once C has been de-
termined to sufficient accuracy, arc length is determined
from one of

n2 2 2a 1 t
2 2S 5 ÏA 2 B dt ,E 2 2!b 2 t

n1

b2 2 2a 1 t
2 2S 5 ÏA 2 B dt , (A9)O E 2 2!b 2 tj51 nj

where nj 5 sinh j, a2 5 B2/(A2 2 B2), and b2 5 1 2

C 2/A2. It is possible to write S, C, and their derivatives
in terms of elliptic integrals, and it is possible to write
down explicit expressions characterizing the error in
estimating the geodesic length from (A9), but these for-
mulas are omitted for brevity. Values obtained from
(A9) were found to favorably coincide with the centi-
meter accuracy expected of the computationally quick
method provided in Sodano (1965, appendix A).
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